POLAR COORDINATES

1. Let O be a fixed point in a plane and $\overrightarrow{\mathrm{OX}}$ be a fixed ray in the plane. The fixed point O is called pole and the fixed ray $\overrightarrow{\mathrm{OX}}$ is called initial line or polar axis. Let P be a point in the plane such that $\mathrm{OP}=\mathrm{r}$, If $\angle \mathrm{Pox}=\theta$ then r, θ are called polar coordinates of P . The point P is denoted by (r , θ). The nonnegative real number r is called radial distance, the vector $\bar{r}=\overrightarrow{O P}$ is called radius vector and the angle θ is called vectorial angle of the point P.
2. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be a point in the cartesian coordinate plane. Take the origin O as pole and the positive direction of x-axis as polar axis (initial line). Let (r, θ) be the polar coordinates of P. Then $r=O P$ $=\sqrt{x^{2}+y^{2}}, \cos \theta=\frac{x}{r}, \sin \theta=\frac{y}{r}$. Thus $x=r \cos \theta, y=r \sin \theta$.
3. Conversion of Cartesian coordinates into polar coordinates is $r=\sqrt{x^{2}+y^{2}}, \cos \theta=\frac{x}{r}, \sin \theta=\frac{y}{r}$.
4. Conversion of polar coordinates into Cartesian coordinates is $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$.
5. Let $\mathrm{r}, \theta \in \mathrm{R}$ and $\mathrm{r}>0,0 \leq \theta<2 \pi$. Then
i) $(\mathrm{r}, \theta)=(\mathrm{r}, 2 \mathrm{n} \pi+\theta) \mathrm{ii})(-\mathrm{r}, \theta)=(\mathrm{r}, \pi+\theta)$.
6. The polar coordinates of the origin are $(0, \theta)$ where $\theta \in R$.
7. The distance between the points $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)$ is $\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}$.
8. The area of the triangle formed by the points $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)\left(r_{3}, \theta_{3}\right)$ is $\frac{1}{2}\left|\Sigma r_{1} r_{2} \sin \left(\theta_{1}-\theta_{2}\right)\right|$.
9. The points $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)\left(r_{3}, \theta_{3}\right)$ are collinear $\Leftrightarrow \Sigma r_{1} r_{2} \sin \left(\theta_{1}-\theta_{2}\right)=0$.
10. If $f(x, y)=0$ is the Cartesian equation of a locus S then $f(r \cos \theta, r \sin \theta)=0$ is the polar equation of S.
11. The polar equation of a line passing through pole and making an angle α with the initial line is $\theta=\alpha$.
12. The polar equation of a line passing through the points $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)$ is $r\left[r_{1} \sin \left(\theta-\theta_{1}\right)-r_{2} \sin (\theta\right.$ $\left.-\theta_{2}\right)=r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)$.
13. The polar equation of a line passing through the pole and the point $\left(r_{1}, \theta_{1}\right)$ is $\theta=\theta_{1}$.
14. The polar equation of a line which is at a distance of p from the pole and whose normal makes an angle α with the initial line is $r \cos (\theta-\alpha)=p$.
15. The polar equation of a line parallel to the initial line is $\mathrm{r} \sin \theta=\mathrm{p}$.
16. The polar equation of a line perpendicular to the initial line is $\mathrm{r} \cos \theta=\mathrm{P}$.
17. $r \cos (\theta-\alpha)=P \Rightarrow x \cos \alpha+y \sin \alpha=p$ (perpendicular form in Cartesian system)
18. The polar form of the line $a x+b y+c=0$ is $a \cos \theta+b \sin \theta=k / r$ where $k=-c$.
19. The equation $\mathrm{a} \cos \theta+\mathrm{b} \sin \theta=\mathrm{k} / \mathrm{r}$ of a line is called general polar equation of a line.
20. The polar equation of a line parallel to the line $a \cos \theta+b \sin \theta=k / r$ is $a \cos \theta+b \sin \theta=k_{1} / r$.
21. The polar equation of a line perpendicular to the line $\mathrm{a} \cos \theta+\mathrm{b} \sin \theta=\mathrm{k} / \mathrm{r}$ is $\operatorname{acos}\left(\frac{\pi}{2}+\theta\right)+b \sin \left(\frac{\pi}{2}+\theta\right)=\frac{k_{1}}{r}$.
22. The polar equation of a line perpendicular to the line $r \cos (\theta-\alpha)=p$ is $r \sin (\theta-\alpha)=p_{1}$.
23. The polar equation of the circle of radius a and having centre at the pole is $\mathrm{r}=\mathrm{a}$.
24. The polar equation of the circle of radius a and the centre at (c, α) is $r^{2}-2 \operatorname{cr} \cos (\theta-\alpha)=a^{2}-c^{2}$.
25. The polar equation of the circle of radius ' a ' and passing through the pole is $r=2 a \cos (\theta-\alpha)$, where α is vertical angle of centre.
26. The polar equation of the circle of radius ' a ' and touching the initial line at the pole is $r=2 a \sin \theta$.
27. The polar equation of a conic in the standard form is $\frac{l}{\mathrm{r}}=1+\mathrm{e} \cos \theta$.
28. The polar equation of a parabola is $\frac{l}{\mathrm{r}}=1+\cos \theta \Rightarrow \frac{l}{\mathrm{r}}=2 \cos ^{2} \frac{\theta}{2}$.
29. The polar equation of a parabola having latus rectum 4 a is $\mathrm{a}=\mathrm{r} \cos ^{2} \frac{\theta}{2}$
